
Design and Implementation of Agent APIs
for Large-scale Social VR Platforms

Ryutaro Kurai*
Cluster, Inc.

Nara Institute of Science and
Technology

Takefumi Hiraki†

Cluster Metaverse Lab
Yuichi Hiroi‡

Cluster Metaverse Lab
Yutaro Hirao§

Nara Institute of Science and Technology

Monica Perusquia-Hernandez¶

Nara Institute of Science and Technology
Hideaki Uchiyama||

Nara Institute of Science and Technology
Kiyoshi Kiyokawa**

Nara Institute of Science and Technology

Figure 1: Conversation between an agent and a user at cluster [2], a social VR already in operation. In this situation, three hunmans
are controlling the humanoid avatar and one agent is controlling the boxy avatar. The female avatar on the far right is asking the
boxｙ avatar to translate from Italian to Japanese. The boxy avatar is connected to OpenAI’s GPT-4, which performs the translation
task. Using the API proposed in this paper, we can implement the above agent in a few lines of Python script.

ABSTRACT

Implementing an autonomous agent on a social VR platform where
many users share space requires diverse information. In particular,
it is required to recognize the distance from other users, their ori-
entation toward each other, the avatar’s pose, and text and voice
messages, and to behave accordingly. This paper proposes an API
to obtain the above information on “Cluster,” a multi-device social
VR platform in operation, and an agent that uses the API. We have
implemented this API using a network proxy. The agent using this
API can connect to ChatGPT [7] and have a conversation in real
time. We measured the latency required for the conversation and
confirmed that the response time was about 1 second.

Index Terms: Human-centered computing—Human computer

*e-mail: r.kurai@cluster.mu
†e-mail: t.hiraki@cluster.mu
‡e-mail: y.hiroi@cluster.mu
§e-mail: yutaro.hirao@is.naist.jp
¶e-mail: m.perusquia@is.naist.jp
||e-mail: hideaki.uchiyama@is.naist.jp

**e-mail: kiyo@is.naist.jp

interaction (HCI)—Interaction paradigms—Virtual reality; Soft-
ware and its engineering—Software organization and properties—
Contextual software domains—Virtual worlds software

1 INTRODUCTION

Social VR platforms have become central to the creation of virtual
communities. They attract large numbers of users who engage
in deep communication and interactive gaming experiences. These
platforms are redefining how we connect and play in VR and shaping
a new frontier for human interaction and entertainment. If bot agents
that behave indistinguishably from humans in such VR space can be
realized, realism and immersion in VR space will be improved.

For example, in entertainment, the quality of the experience would
be improved by allowing people to enjoy interacting with realistic
characters in VR environments [3]. In education and training, this
approach will allow for more realistic practice, particularly in devel-
oping interpersonal skills [5]. Furthermore, in psychological support
and therapy, a bot agent that enables realistic interaction could prove
to be highly beneficial [4].

The construction of a VR experimental environment is one of
the scopes in the above realization of bot agents inseparable from
humans in the VR space. The development and widespread use of
game engines such as Unity and Unreal Engine and head-mounted
displays (HMDs) such as HTC Vive and Meta Quest have made
designing and implementing experiences in VR environments easier.
Therefore, if it is possible to activate the agents mentioned above

in a VR environment with many participants, it can be used as a
promising field of experimentation for developers and researchers.
However, there are technical difficulties in creating a VR environ-
ment in which many people can participate, such as synchronizing
information between users and difficulties in securing the absolute
number of users to participate in the first place.

Some social VR platforms solve information synchronization
problems. Many people are already interacting with such services.
VRChat is a well-known example. VRChat has about 100 million
monthly active users [9], has few restrictions on the representation
of avatars and the structure of the virtual space, and is a platform
that we can use as an experimental field. However, VRChat does
not provide Application Programming Interfaces (APIs) for com-
municating information in the virtual space to agents or controlling
avatars outside VRChat. To the best of our knowledge, such APIs
have not been made available on any social VR platform other than
VRChat.

The popular game Minecraft [6] provides such APIs by a third
party [8]. Voyager [10] is an agent that runs on top of Minecraft and
connects the game character to the Large Language Model (LLM)
to control the character. However, Minecraft is a specific game title,
and the avatars that run on it have limitations, such as few types of
avatars, they can express few poses, and we cannot use voice calls.
In contrast, social VR platforms allow users to freely select and use
uploaded avatars with fewer restrictions and high expressive power
in the virtual space.

To address this problem, we propose an API that enables agents
to operate on the Cluster [2], a social VR platform where many
people can participate, and avatars have high expressive power,
e.g., appearance, gesture, and voice. Using the proposed agent
API, developers can implement agents with minimal prerequisite
knowledge of HTTP communication. In addition, we prepare agent
software that can be called and controlled from our API and realize
avatar operation. By connecting to other web services via this agent
software, it is possible to make the agent behave in various ways.

We designed and implemented the proposed agent API and agent
software and confirmed their operation. We show the actual opera-
tion of the agent on the Cluster in Fig. 1. We also implemented an
agent connected to ChatGPT [7] as an application of the agent API
and confirmed the feasibility of a conversational agent on a social
VR platform.

2 METHODOLOGY

In this study, we propose an agent API that operates on a social VR
platform where multiple people can share the same VR space and
communicate in a VR environment. As a social VR platform, we use
Cluster, which Cluster Inc. operates. It have been downloaded more
than 1 million times and the total number of users has exceeded 8
million. It is the largest social VR platform in Japan.

This section describes the communication required to realize an
agent operating in a VR environment. Communication is necessary
to convey information in the virtual space to the agent and to give
instructions from the agent to the avatar in the virtual space.

2.1 Terminology
First, we explain the terminology used in this paper.

2.1.1 User
We define a user as a person who uses Cluster. Users have a unique
ID and can communicate with other users in the VR space using an
avatar of their choice.

2.1.2 Cluster Server
A Cluster server is the software that shares avatar motion information
between users in the VR room. It runs on a computer managed by
the service provider (Cluster, Inc.). Its primary role is to receive

avatar movements through communication from Cluster clients and
share them with other Cluster clients.

2.1.3 Cluster Client
A Cluster client is the software that runs the Cluster. It can run in
multiple environments, including Windows, OS X, Android, and
iOS. This paper is intended for Windows and OS X clients. The
Cluster client receives keyboard and mouse input from the user and
expresses the input as avatar movements within the Cluster space.
Users sent the represented motion to the Cluster server to share with
other users.

2.1.4 Comment
Text can be shared within the VR space by input from the key-
board. Users can share the text with all users in the same space as
fig. 1. Cluster provides this function to users as a method of verbal
communication.

2.1.5 Emote
A communication feature that displays the user’s emotion as an
emoticon. By selecting an emoticon with the mouse, the avatar will
pose the same as the emoticon or display a heart icon directly above
the avatar.

2.1.6 Agent API Module
The Agent API module proposed in this paper is added to the Cluster
client, which intervenes in the communication between the Cluster
client and the Cluster server and provides the API required to create
the agent software.

2.1.7 Agent Software
Agent software denotes software that implements agent movements
using the API provided by the agent API module. Specifically, it
is software that obtains the movements of other users from the API
module and directs the response by the avatar. We use HTTP to
communicate from the agent API module to the agent software.
Therefore, we implement the agent software as an HTTP server and
HTTP client.

2.2 Implementation
2.2.1 Monitoring of Communication by the Agent API Module
First, we consider the pathways that convey information to the agent
in the virtual space. We show a schematic diagram of an agent API
operating in a VR environment in Fig. 2. Information in the virtual
space includes the avatar’s position, posture, comments, voice, etc.,
of users simultaneously present in the same space. Typically, when
using Cluster, all of this information is represented as rendered
media, such as virtual scenes, UIs, and audio. However, when
considering agent control, this information should be available as
numerical data that can be directly analyzed, e.g., spatial coordinates
and audio signals.

Therefore, we have developed an API module that provides this
information in space in a desirable form to the agent. As fig. 2a
shows, client and server are normally connected directly. This
module exists between the Cluster client and the Cluster server in
Fig. 2b and runs on the computer on which the Cluster client runs.
This module monitors the communication between the Cluster client
and the Cluster server. Also, it provides the agent software with the
information the agent needs in an easy-to-use form.

The Cluster client and server are constantly adding and chang-
ing functionality daily. Therefore, this API module is separated
from the client and server and monitors their communication. If
we tightly couple a module to the Cluster client or Cluster server
implementation, the module must be updated daily to keep up with
the changes.

Figure 2: Schematic diagram of communication when using the agent API proposed in Cluster. Figure a illustrates the communication method
between client and server in a normal cluster. Figure b illustrates the communication method when Agent Software calls Agent API Module, and
figures c and d illustrate the communication method of Avatar’s location from Agent API Module to Agent Software.

Changes in the communication protocols between server–clients
are relatively infrequent compared to changes in the main server and
client units. Therefore, it is easy for the module to track changes in
the Cluster.

In addition, since development and updates can be performed
independently of the development and release of Cluster, there is
less conflict between service development and research activities.

We will describe the data flow through this agent API module
using location information as an example. This flow is divided
into three parts: (i) Avatar operation through Cluster client, (ii)
Monitoring communication from the Cluster client to the server,
(iii) Monitoring communication from the Cluster server to the client.
Note that other types of data, such as voice and avatar posture, can
also be updated by the same procedure.

Avatar operation through Cluster client In this system con-
figuration, the agent software operates the avatar via the Cluster
client (Fig. 2c-1). As the same software as the Cluster client used by
ordinary users, the agent software can only manipulate the mouse
and keyboard controls. Therefore, we designed the agent software
to use PyWinCtl and PyAutoGUI, libraries that emulate mouse and
keyboard operations from Python, to control the Cluster client. Since
the keys ”w”, ”a”, ”s”, and ”d” are assigned to move the avatar in
Cluster, we can move it in any direction by operating these keys. The
avatar can also face the desired direction by emulating the mouse
operation in the Python control.

Monitoring communication from the Cluster client to the
server The Cluster client sends the avatar movements manipulated
by the Agent software to the server as avatar location information
(Fig. 2c-3). Our Agent API module monitors this communication
to know which coordinates the avatar has moved to (Fig. 2c-2). For
example, if there are target coordinates to move the avatar to, the
difference between the target coordinates and the current coordinates
is calculated to determine the next Cluster client operation.

Monitoring communication from the Cluster server to the
client By monitoring messages from the Cluster server to the
Cluster client, the agent API module can know at which coordinates
the other users are located (Fig. 2d-2). Using the other user’s location
information thus obtained, the agent software can move the operating

Table 1: The Agent API requests agent software to respond to the
these pates. Each path corresponds to a type of data in VR space.

Path Contents of data to be sent

/location Avatar position of other users,
Avatar location information operated by the agent

/emote Information about emotes displayed by other users

/comment The contents of comments entered by other users
are POSTed at the time of commenting.

avatar closer to the other user’s position or change its orientation in
that direction.

2.2.2 Communication from the Agent API module to the
agent software

The Agent API module selects only the information necessary for the
agent’s operation from the content of the monitored communication,
converts it into an easy-to-use form, and sends it to the agent soft-
ware. Specifically, this information includes location information of
other users in space, comments, and emotional expressions called
emotes. We show the list of HTTP requests from the Agent API
module to the agent software and their detailed contents in Table 1.

The Agent API module communicates with the agent software
via HTTP. We make all HTTP requests using the POST method and
store the necessary data in the payload in JSON. We choose HTTP
for communication from the API module to the agent software to
reduce the learning costs for developers implementing the agent
software. Although we can consider alternatives such as using a
proprietary protocol instead of HTTP, HTTP server implementa-
tions are available in many programming languages, and developers
can concentrate on implementing agent control rather than commu-
nication protocols. We plan for Cluster to provide the agent API
module so developers can experiment with various software-only
agent implementations.

2.2.3 Communication from the agent software to the agent
API module

The agent software manipulates the Cluster client using mouse and
keyboard emulation to control the avatar. However, entering com-

ments and selecting emotes using mouse and keyboard emulation is
complex and increases input uncertainty. Therefore, the Agent API
module has a function to accept the input of comments and emotes.
This feature is implemented as an HTTP server, allowing the agent
software to send requests to the agent API module via HTTP. This
will enable comments and emoticons to be sent to the Cluster server
without mouse or keyboard emulation.

We implement the agent API module and agent software designed
as described above using Python.

3 IMPLEMENTATION AND EVALUATION OF AN AGENT IN A VR
ENVIRONMENT

Using the proposed agent API module, we implement an agent to
communicate with other Cluster users. We use the Large Language
Model (LLM) to generate the text necessary for communication and
to control some of the avatars, and we use OpenAI’s get-3.5-turbo as
the LLM. The agent software can detect when a user is approaching
the agent-operated avatar by measuring changes in user location
information sent from the agent API module. We could implement
the above agent in about 200 lines of Python script. Figure 1 shows
the interaction between the user and the agent in the user’s first-
person viewpoint image, where the agent is programmed to return a
greeting in the comment field in response to the user’s approach.

Here, we did not prepare the greeting as a canned text, but we
generated it each time using Open AI’s API. We show an example
of a prompt used below.

• A person by the name of <username > approached me. Please
say something to him.

• A person by the name of <username > said <comment >.
Please reply in as short a sentence as possible.

• A person with the name <username > moved away. Please
say something to them.

• A person by the name of <username > show the emotion
<emotion icon >. Please say something to them.

We confirmed that the system generates appropriate greetings by
describing the avatar’s situation and distance from the user, as in the
prompt example. In other words, the user could spontaneously greet
other avatars as they approached and say goodbye to avatars who
were moving away. The system could also comment on the emote.
We also found that the user’s history and the avatar’s approach and
departure are stored, so the greeting text reflects this behavior.

As the speed of the conversational response significantly impacts
the user experience, we measured the time required for the agent
to respond to the conversation. We prepare 110 quizzes from the
official AI King distribution dataset [1] as the question text to the
agents. We asked the agents about the above quizzes using comments
and measured the time from when the question remarks were posted
to when the answers from the agents reached the clients. As we
measured the client’s time on the questioner’s side, this time also
included the round-trip communication time via the Internet. The
results show that the average time to respond to the conversation

was 1.34 s, with a standard deviation of 0.27 s. From this response
time, the implemented agent has a sufficient response speed as a
communication response, and we expect the conversation to be
natural for the user.

4 CONCLUSION

In this paper, we proposed an agent API to realize a system in which
an agent freely designed by the user can operate in a VR environment.
We designed and implemented an agent API module in the Cluster,
a social VR service that many users use. We also implemented an
agent that runs in a VR environment using the API and showed that
natural communication with users is possible using LLM.

Prospects include API modules and software openness. In the
current implementation, it has not yet been possible to open the
software widely due to the security risks for the Cluster companies.
It is necessary to establish an environment where many researchers
can use this API in the future through a simple contract with Cluster.
In addition, to reach users widely as part of the service, having an
agent on the Cluster server side will be necessary rather than having
the agent software operate Cluster clients.

ACKNOWLEDGMENTS

This work was partially supported by JST ASPIRE Grant Number
JPMJAP2327.

REFERENCES

[1] abc/EQIDEN Executive Committee. Ai king official distribu-
tion dataset. https://sites.google.com/view/project-aio/
dataset.

[2] Cluster, Inc. Metaverse platform - cluster, 2017. https://cluster.
mu/en.

[3] W. Hai, N. Jain, A. Wydra, N. M. Thalmann, and D. Thalmann. Increas-
ing the feeling of social presence by incorporating realistic interactions
in multi-party VR. In Proceedings of the 31st International Conference
on Computer Animation and Social Agents, CASA 2018, pp. 7–10,
May 2018.

[4] G. Kaimal, K. Carroll-Haskins, M. Berberian, A. Dougherty, N. Carl-
ton, and A. Ramakrishnan. Virtual reality in art therapy: A pilot
qualitative study of the novel medium and implications for practice.
Art Therapy, 37(1):16–24, Jan. 2020.

[5] G. Makransky and L. Lilleholt. A structural equation modeling investi-
gation of the emotional value of immersive virtual reality in education.
Educ. Technol. Res. Dev., 66(5):1141–1164, Oct. 2018.

[6] Mojang. Minecraft. https://www.minecraft.net/, Dec. 2023.
Accessed: 2024-1-11.

[7] OpenAI. ChatGPT (Mar 14 version) [Large language model]., 2023.
https://chat.openai.com.

[8] PrismarineJS. mineflayer: Create minecraft bots with a powerful,
stable, and high level JavaScript API.

[9] Reuters. ChatGPT sets record for fastest-growing user base - analyst
note. Reuters, Feb. 2023.

[10] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and
A. Anandkumar. Voyager: An open-ended embodied agent with large
language models. arXiv preprint arXiv: Arxiv-2305.16291, 2023.

